A Simple Approach to Learn Polysemous Word Embeddings
نویسندگان
چکیده
Many NLP applications require disambiguating polysemous words. Existing methods that learn polysemous word vector representations involve first detecting various senses and optimizing the sensespecific embeddings separately, which are invariably more involved than single sense learning methods such as word2vec. Evaluating these methods is also problematic, as rigorous quantitative evaluations in this space is limited, especially when compared with single-sense embeddings. In this paper, we propose a simple method to learn a word representation, given any context. Our method only requires learning the usual single sense representation, and coefficients that can be learnt via a single pass over the data. We propose several new test sets for evaluating word sense induction, relevance detection, and contextual word similarity, significantly supplementing the currently available tests. Results on these and other tests show that while our method is embarrassingly simple, it achieves excellent results when compared to the state of the art models for unsupervised polysemous word representation learning. Our code and data are at https://github.com/dingwc/
منابع مشابه
Learning Word Sense Embeddings from Word Sense Definitions
Word embeddings play a significant role in many modern NLP systems. Since learning one representation per word is problematic for polysemous words and homonymous words, researchers propose to use one embedding per word sense. Their approaches mainly train word sense embeddings on a corpus. In this paper, we propose to use word sense definitions to learn one embedding per word sense. Experimenta...
متن کاملMulti-phase Word Sense Embedding Learning Using a Corpus and a Lexical Ontology
Word embeddings play a significant role in many modern NLP systems. However, most prevalent word embedding learning methods learn one representation per word which is problematic for polysemous words and homonymous words. To address this problem, we propose a multi-phase word sense embedding learning method which utilizes both a corpus and a lexical ontology to learn one embedding per word sens...
متن کاملImproving Twitter Sentiment Classification Using Topic-Enriched Multi-Prototype Word Embeddings
It has been shown that learning distributed word representations is highly useful for Twitter sentiment classification. Most existing models rely on a single distributed representation for each word. This is problematic for sentiment classification because words are often polysemous and each word can contain different sentiment polarities under different topics. We address this issue by learnin...
متن کاملImprove Lexicon-based Word Embeddings By Word Sense Disambiguation
There have been some works that learn a lexicon together with the corpus to improve the word embeddings. However, they either model the lexicon separately but update the neural networks for both the corpus and the lexicon by the same likelihood, or minimize the distance between all of the synonym pairs in the lexicon. Such methods do not consider the relatedness and difference of the corpus and...
متن کاملContext-Specific and Multi-Prototype Character Representations
Unsupervised word representations have demonstrated improvements in predictive generalization on various NLP tasks. Much effort has been devoted to effectively learning word embeddings, but little attention has been given to distributed character representations, although such character-level representations could be very useful for a variety of NLP applications in intrinsically “character-base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.01793 شماره
صفحات -
تاریخ انتشار 2017